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ABSTRACT

“lhe nonsteady flow equations associated
supersonic wedge were t
system was then linearized Wth res
shown that for certain regions\of tde flow field a velocity potential
could be defined, and a formal s&fies solution for the potential in these
regions wvas found. It was also/sh that the pressure perturbation
satisfies Iaplace's equation, bly transformed space, for both

an impulsively accelerated
time-independent system. This
to the velocity change. It was

field was obtained.
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Symbol
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NOMENCLATURE

Acoustic speed
Specific heat at constant pressure
Direction normal to a streamline

Pressure
2 2
N+,

Time

Velocity camponents in X,, X; plane
Initial wedge velocity

Increment in wedge velocity
Dimensionless perturbation velocity
Reference Mach number

Physical space coordinates

Wedge angle

Shock angle relative to wedge velocity

Ratio of specific heats
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NOMENCLATURE
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Dimensionless perturbation pressure

Density
Dimensionless perturbation density
Velocity potential
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INTRODUCTION

Current design philosophy in missiles and space craft has generated an
interest in the effects of high longitudinal accelerations. The effects
of lateral accelerations have been studied rather extensively (Refs. 1 »
2, 3), particularly within the framework of linearized theory. However,
little has been done to determine longitudinal effects.

Dimensional considerations and order of magnitude studies indicate (Ref.
1) that small values of the parameter ql/V3, where q is acceleration, |
is characteristic length, and V is velocity, should correspond to small
acceleration effects. Since boost accelerations of the order of several
hundred ¢ are contemplated for existing designs, and since these high
accelerations will prevail through the low supersonic end of the speed
range, & quantitative measure of the aerodynamic effects is desirable.

This study attempts to provide insight into the flow fields associated
with accelerating bodies by considering the case of a two-dimensional
wedge vwhich undergoes an instantaneous but small velocity change from
one supersonic speed to another.

Following Spitzer (Ref. U4), the nonsteady flow equations for this problem
are transformed into a time-independent system. A linearization of the
resulting equations is effected by ignoring terms of second and higher
orders in the velocity change, AV, considering the flow field as a per-
turbation from the steady attached shock wedge-flow case. The resulting
linear system is then examined fram the standpoint of possible solution,
including the derivation of a potential equation for the case of irrota-
tiomal flow. It is shown that for the general case the pressure is a



2.

solution to Iaplace's equation in a suitably transformed space, and solu-
tions for the special case of & small wedge angle are obtained.

WAVE GEQOMETRY

Consider a wedge (Fig. 1) with initial velocity V which is increased
instantaneously at t«0 to V+AV, with

Av_«l

v

We choose a coordinate system (X,, X,) vhich is translating at the final

speed of the wedge with the origin coincident with the wedge vertex for
t20 .,

The wedge velocity is assumed sufficiently large that a plane shock wave
is attached at the wedge vertex. Since neither the wedge nor the gas
have a characteristic length, one must suppose that for any time ¢t a
length defined, for example, by V¢ will serve to define the scale of the
flow. That is, the application of an impulsive acceleration to the wedge
generates a wave pattern vhich grows uniformly with time. The character
of this wave pattern becames clear on further investigation. For a point
on the body remote fram the vertex, the impulsive acceleration generates
& wvave propagating in a direction normal to the wedge surface vhich in-
duces a normal velocity AV sin @ in the gas. For AV small, the propaga-
tion speed, relative to the gas, of this wave will bde s, , the acoustic
velocity behind the initial shock wave. Simultaneously, a cylindrical
wave will originate at the vertex at t=0 . This wave, for small AV,
will propagate redially from its center at speed ,, and its center will
convect along the wedge surface at the speed of the gas. A new shock
wave vill be formed at the vertex, corresponding to steady-state flow at
the nevw wedge velocity. The wave geometry for a particular time is showmn
in Fig. 2. The dashed portion BC of the shock falls inside the circle de-
fining the cylindrical wave; its shape is not knowm. It e is assumed



t=0

FIGURE 1

t>0



sufficiently small, then OB and CC’ will be tangent to the circle.*® The
geametry shown 1s for a relatively low Mach number so that oo’ is tangent
to the circle. For sufficiently high Mach numbers, C and D coslesce and
this point moves down the right hand side of the circle toward € as the
Mach number increases.

TRANSFORMATION OF THE EQUATIONS

The momentum, continuity, and energy equations can be expressed for this

problem as
M oayZi i1 hi=12 ()
ot 0::’ P Ox
aL . a(Pui) .0 (2)
at ? x,
_D_ a2 UIUI 21 —a-z-
Dt (?-l ' 2 ) T ar ()

vhere it is assumed that the fluld is a perfect gas.

The previous discussion suggests the transformation

6 (1)

0‘0

If the flow variables are functions only of §;, Eas. (1), (2), and (3)

becaome

*
It was pointed out to the author by Professor Nicholas Rott that the
angle B FCis proportional toa@ % for small @, placing & more severe
restriction on this angle than would at first seem necessary.
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au
(U —ayé) —L + L 22 a0
J ~ N 7t . 3¢ (5)
d (p U;)
__p_l_-c‘f'—a.ﬂ.-b (6)
9§ 9
U —oy g) 2 (2 2+l yu)e 2 g 2P _p
- § (,_1,. — YY) Pfjag (1)
We now define
v
o Y (8)
9
-P
re 220 (9)
Yey
'-P_:_:]_ (10)
P
neh-w (11)

vhere W is the (constant) vector Mach number behind the initial shock
wave and Py, P are the pressure and density, respectively, behind the
initial shock.

In the % , 72 coordinate system the cylindrical wave ABCDE maps into half
of the unit circle with F mapping into the origin. The waves and the
wedge are stationary in this space (Fig. 3).
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We formally assume that the restriction of small AV/V implies small values
for v , 0, and ). Inserting Eas. (8), (9), (10), and (11) into BEgs. (5),
(6), and (7) and retaining only lowest order terms provides

0
ﬂ Ll
do d
"— - -o
Ja'lj a'lj (].3)
-1 oW o-n ]2 3o Wy 20 <0
[cr-1 % - o Il (24)

Eqs. (12) and (13) may be substituted into (1l4) to provide

3 d
moy 2L - .o (15)
an‘ Ovp’

We consider Egs. (12), (13), and (15) as our system, noting that Egs. (12)
and (15) may be considered independently of (13).

Ny ,
C
Dl
F "
0
FIGURE 3
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SOLUTION OF THE EQUATIONS

A number of manipulations can be performed on this system. It is shown
in Ref. 4 that the characteristic directions for the systems are real out-
side the unit circle and imaginary inside. Since the solution outside
the unit circle can be obtained from ordinary shock wave considerations,
knowledge of the characteristic system does not seem to have much real
significance except to define formally the unit circle as the boundary
between the elliptic and hyperbolic regions of the plane. Examining Fig.
3, we see that the "streamlines" through points B and C must terminate at
F, defining a triangular shaped region outside of which the fluid parti-
cles are acted upon by a plane shock only. The flow in regions ABFand
in FCE will thus be irrotational. If the interaction BC is a "smooth"
one, then the entropy gradient ds/dn and, hence, by Crocco's Theorem, the
vorticity, will be of order AV in BCF.

If a velocity potential is postulated

V' L] a—a-i- » (16)
!

it can be shown that

2 2 a?
m =L s2g my LS (nf - NEL -0 1)
' n; mgny an,?

Solutions to this equation, using separation of variables, can be expres-
sed as

¢= £ [Atmn + 80 (-nr)[ciemnoe0; Wnno] (18)
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vhere rulny ¢y )

0= tan "(_::.:_)

and f(m ) 1g expressed in terms of the hypergeametric function

LA LA n-o-l;r’)

f(ne)arm 2 2

.'L.."_':.'_;nn;l)
2 2

The presence of &n infinity in §(-nr) at r e 0 suggests that
8, =0

We may also choose, with no loss in generality,
A,. -1,

glving

¢-i. f(n, r) (C, cos n 0+ Dy sin n0)

These solutions apply in regions ABF and FCE.

THE PRESSURE EQUATION

(19)

(20)

(21)

(22)

(23)

(24)

With some manipulation, the velocities may be eliminated from Egs. (12)

and (15), providing
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("‘2+|)'_¢3__A_+ 2, qzi_)‘__+(,,2+|),;3_"__ + 29, 90 429, 30 L0 (25)
dn 2 am dng ST TR T

or, in polar coordinates,

2 (,2 3%\ 2 A A
e (r +1)..5_'.,._ +0(2r +1)3'_. +575_-0 (26)

The transformation

Te— (27)
transforms Eq. (26) into Laplace's equation
r? :‘::4»7::4-:::-0 (28)
with general solution
A = H(Tel0) 4 g (To10) (29)

BOUNDARY CONDITIONS

The flow properties in the region exterior to the unit circle are known,
so that the values of pressure and velocity perturbations on segments AB,
CD, DE, as well as the velocity and normal derivative of the pressure at
the wedge surface are known.
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L T B P Ry W)

AV sin asin B8y
v‘ - - - Vz‘

cos (8 - a)

v AV sin a cos B,
2 e (By - a)

= V2 (30)

P2 =P
144!

Aw

Ay,

vhere B2 and Py are, respectively, the wave angle for and the pressure
behind the oblique shock OB.

On CD

vi=A=0 (31)
On DE

Vie- AV sinla

vz-AV sinacos a (32)

A-_A_v. sina

o

On AE

" lina-v,ena-o

(33)

I .o
dy

On segment BC & difficulty arises in that the details of the shock inter-
action are not known. It is surmised that the shock segment BC is a smooth



curve, matching slopes with OBat B and CC atC. A numerical scheme in
vhich the shock shape is determined simultaneously with the solution of
the flow equations, in the manner of current methods of solving the blunt
body problem, would seem to be appropriaste.

If the wedge angle @ is assumed small, shocks OB and CC’will, in the
limit, be tangent to the circle, giving the geametry of Fig. 4. In this
case the interaction occurs "outside" the unit circle and the conditions
on BC are a simple superpostion of the conditions on AC and on BD. That
is, A=A3=23=17 and Vi"¥Y2i onCB.

FIGURE 4

T. THE PRESSURE DISTRIBUTION

The solution for A may now be written

o b o).

(34)
-(1/1+x,)[| log (-:-:—-;-:-)»,(o,--)]nﬂ[n log (:;_;g) +(o¢-a)] '

n
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where

k-\ﬂ——'I .is-k."l(al"a)
2= .,..1(0- a) Ic= ko'(oc' a) (35)
g = ke'(08-a T.= Rl

This solution applies inside the circle ADE . Fig. 5 shows a plot of A
versus distance along wedge surface for different initial Mach numbers.

-0.02

M =1.93

FIGURE 5

8. THE VELOCITY POTENTIAL

For the small angle case, the entropy gradient is of the order a?AV  and
can be ignored. The coefficients of Eq. (24) can then be formally evalu-
ated. We define

12



lﬁnﬂ-d

and write

b= % f(n,r) (C, cos ny + D, sinny)

(36)

Since by Eq. (33)&--0 at ¥=0 ang Yy =n, we require that ¢ be

an even function of ¢, giving

D, =0

Egs. (30), (31), and (32) can be expressed in terms of ¢ as

AV sin a cos ¢ °<,/,<.2!
9¢ - r
af f-‘ o 2<¢<¢s
Vo cos ¢+v:28iﬂl/l ¢‘<¢l<'

vhere only lowest order terms have been retained.

Formally
02 < df
rrl IR -%‘a—' (n, 1) C, cos ny ,

and since (Ref. 5)

F'(-z'l,ﬂ-—l-i""’“‘)':%:‘l F(-;—,-E%l;n-t‘; 1)

(38)

13



we have

girt (¢ = % n2C, cos ny (39)

From Eq. (39), using standard methods,

c __I(-i)T'[li»(-\)ﬂ] AVsina-yL; [ sin (n+1)ﬁ sin (n-l)h ]

" wnd(n?2 1) m n+l + n=1

(40)

L2z |_ 220" | cos (n+D gg  cos (n-1) ’I'L]

wnd n2-1 n+l n-1

9. CONCLUSION

The pressure distribution and the potential function have been determined
for the case of very small wedge angle. The solution for larger wedge
angles could not be completely obtained owing to inability to specify the
boundary values in the shock interaction region. However, the pressures
to either side of the unit circle are constant and can be determined from
ordinary shock considerations. It is felt that the nature of the pressure
variation on the wedge surfece inside of the unit circle is not markedly
different for large angles from that given by the small angle solution.

The transient foredrag of a simple wedge wing can be estimated roughly by
noting that for the extreme case of M = 1.25 the pressure coefficient to
the right of E is approximately six percent greater than that to the left
of A. The mean value of the transient foredrag coefficient would then be
roughly half this value, that is, three percent of the final steady state
foredrag coefficient. For the higher Mach numbers this value decreases,
becaming slightly negative for M, = 1.93.

4
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